Protein-tyrosine phosphatase 1B deficiency reduces insulin resistance and the diabetic phenotype in mice with polygenic insulin resistance.
نویسندگان
چکیده
Mice heterozygous for insulin receptor (IR) and IR substrate (IRS)-1 deficiency provide a model of polygenic type 2 diabetes in which early-onset, genetically programmed insulin resistance leads to diabetes. Protein-tyrosine phosphatase 1B (PTP1B) dephosphorylates tyrosine residues in IR and possibly IRS proteins, thereby inhibiting insulin signaling. Mice lacking PTP1B are lean and have increased insulin sensitivity. To determine whether PTP1B can modify polygenic insulin resistance, we crossed PTP1B-/- mice with mice with a double heterozygous deficiency of IR and IRS-1 alleles (DHet). DHet mice weighed slightly less than wild-type mice and exhibited severe insulin resistance and hyperglycemia, with approximately 35% of DHet males developing diabetes by 9-10 weeks of age. Body weight in DHet mice with PTP1B deficiency was similar to that in DHet mice. However, absence of PTP1B in DHet mice markedly improved glucose tolerance and insulin sensitivity at 10-11 weeks of age and reduced the incidence of diabetes and hyperplastic pancreatic islets at 6 months of age. Insulin-stimulated phosphorylation of IR, IRS proteins, Akt/protein kinase B, glycogen synthase kinase 3beta, and p70(S6K) was impaired in DHet mouse muscle and liver and was differentially improved by PTP1B deficiency. In addition, increased phosphoenolpyruvate carboxykinase expression in DHet mouse liver was reversed by PTP1B deficiency. In summary, PTP1B deficiency reduces insulin resistance and hyperglycemia without altering body weight in a model of polygenic type 2 diabetes. Thus, even in the setting of high genetic risk for diabetes, reducing PTP1B is partially protective, further demonstrating its attractiveness as a target for prevention and treatment of type 2 diabetes.
منابع مشابه
ارتباط پلی مورفیسم 3'UTR(1484insG) از ژن پروتئین تیروزین فسفاتاز B1 با بیماری دیابت نوع2 ، مقاومت به انسولین و چاقی در یک جمعیتی از تهران
Background and Aim: Type 2 diabetes mellitus is a heterogeneous disorder resulting from a combination of genetic and environmental factors which contribute to pathogenesis by influencing beta cell function and tissue insulin sensitivity. Protein tyrosine phosphatase 1B (PTP1B)" efficiently dephosphorylates the insulin receptor and attenuates insulin signaling. Recently, a 1484insG variant of th...
متن کاملProtein Tyrosine Phosphatase 1B is Impaired in Skeletal Muscle of Diabetic Psammomys Obesus
Protein tyrosine phosphatases (PTPases) have been suggested to modulate the insulin receptor signal transduction pathways. We studied PTPases in Psammomys obesus, an animal model of nutritionally induced insulin resistance. No changes in the protein expression level of src homology PTPase 2 (SHP-2) (muscle, liver) or leukocyte antigen receptor (LAR) (liver) were detected. In contrast, the expre...
متن کاملData in support of fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to becom...
متن کاملThe effect of resistance training on protein-D surfactant and insulin resistance index in healthy and type 2 diabetic rats
Introduction Protein-D Surfactant (SPD) is a new factor associated with glucose intolerance, insulin resistance, and type 2 diabetes. The aim of the present study was to investigate the effects of resistance training on surfactant protein-D in streptozotocin-nicotinamide-induced diabetic rats. Materials and Methods In this experimental study، 48 adult male Wistar rats in the weight range of 2...
متن کاملThe Effect of Eight Weeks of Aerobic Exercise on the Expression of Senescence Proteins P53 and P16 in Pancreatic Tissue of Diabetic Mice
Background: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress and increases insulin resistance and also increases in p53 and p16 beta cells, leading to the induction of senescence in pancreatic insulin-secreting cells. The aim of this study was the effect of eight weeks of aerobic exercise on the expression of senescence proteins P53 and P16 in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 282 33 شماره
صفحات -
تاریخ انتشار 2007